

CARTOGRAPHIE PROTEIQUE DES CELLULES B LYMPHOBLASTOÏ DES HUMAINES PAR ELECTROPHORESE BI DIMENSIONNELLE ET SPECTROMETRIE DE MASSE MALDI -TOF ET ESI Q-TOF

J-P. LE CAER, V. LABAS, D. PFLIEGER

Laboratoire de Neurobiologie et diversité cellulaire. ESPCI CNRS UMR 7637 F 75231Paris Cedex 05. N. IMAM-SGHIOUAR, R. JOUBERT-CARON, M. CARON

Equipe de Biochimie des Protéines et Protéomique. UFR SMBH Léonard de Vinci. Université Paris 13.

écrite par Tip C18

OBJECTIF

La constitution de cartographies de référence constitue un pré-requis pour l'étude protéomique de cellules lymphoïdes humaines. L'utilisation conjointe de l'électrophorèse bidimensionnelle sur gradients de pH immobilisés , de l'analyse informatique , de l'annotation des gels obtenus et de la spectrométrie de masse (MALDI-TOF-MS et ESI/MS/MS), nous a permis d'établir une cartographie protéique de cellules B lvmphoblastoïdes

MATERIEL ET METHODE

Electrophorèse bi dimensionnelle :

10 à 500 mg de protéines solubles des cellules lymphoblastoïdes de la lignées PRI en culture ont été séparées par électrophorèse bi-dimensionnelle

Pour la première étape d'isoélectrofocalisation, deux gradients de pH immobilisés ont été utilisés : IPG 4-7 et 5-8 avec l Protean IEF Cell (Biorad). La seconde dimension est réalisée dans un gel de polyacrylamide en gradient 8-18% avec le Protean IEF Cell (Biorad).

<u>Coloration, analyse informatique</u>: Les gels ont été colorés au bleu de Coomassie Colloïdal ou à l'argent puis ont été scannés et analysés au moyen des logiciels Melanie 2.3 (Biorad) et 3 (GeneBio).

Digestion enzymatique : Les spots d'initérit ont été découpés et digérés dans le gel par la trypsine bovine (Roche Diagnostics) selon la méthode décriti Shevchenko et al, 1996. Après digestion des protéines, les peptides générés ont été extraits et dessalés sur micro-colonne Zip Tip (Millipore).

Spectrométrie de masse :

Spectrometric de masse : <u>MAIDLTODE</u> L. échamillon a déi déposé sur la cible selon la méthode de la goute séché (viv; 1 : 1) avec une solution saturé d'avide 2-5 displorotybercollege (DHB) en TEA 0,1%. Les cartes pertidiques cont été obtenues à l'aide d'un spectromètre de masse MAIDLTOP Voyage DE-STR (Applied Biosystems, Franingham, MA), en mode réflection positif avec une tension d'avcélération de 20 000 V, une extraction trattede de 200 avec environ 290 ûn la baer additionnés sont requis pour une caquisition spectres. L'analyse et le retrainement des données on tété effectués par le logiciel Data Explorer (Applied Biosystems). Tous les spectres obtenues on tété étalannés, d'une part en extreme cuitisant les masses monoitorophysica des peptides De-scap Bradykini, (MP 904.4681) et ACTH (18-39) (PM 2465.1989) et d'autre part, en interne ser les produits d'autodigestion de la trypsine (fragment 207-214 : PM 906.50, fragment 132-142 : PM 1153.57, fragment 56-75 : PM 2163.06).

Le séquençage de certains des spots a été effectué soit en introduction directe par ionisation nano-spray soit par couplage d'une chaîne CLHP Ultimate LC Packing et d'un spectromètre Q-TOF 2 Micromass.

Les peptides sont fragmentés par CID (collision avec de l'argon à une énergie de collision entre 05 et 35 eV).

Identification dans les banques de données

Mass finger printing :

Le logiciel Peptident a été utilisé pour identifier les protéines par comparaison des masses expérimentales des fragments t obtenus avec les masses calculées à partir des séquences des banques protéiques (SWISS-PROT) et nucléotidique (Gen-Bank/TrEMBL).

Les identifications on été réalisées en prenant des tolérances de 0.1 Da sur la précision de mesure, +/- 1 unité de pH pour les points isoélectriques et 30 % de variation sur les masses moléculaires calculées à partir de la deuxième dimension de l'électrophorèse. Identification à partir des spectres MS/MS

Les spectres de fragmentation ont été utilisé après déconvolution par Max Ent 3, et les spectres reconstitués sauvegardés sous format*.dta ont servi à la recherche de peptides homologues dans Mascot.

Résultats

N° spot	N°accés	Nom de la protéine	pI	∆pI	MW	ΔMW	Peptides	% deCouverture	Méthode	Maturation
	Swiss-prot					(%)	trouvés	de la Séquence	d'identification	du N terminal
43	Q04917	14-3-3 PROTEIN ETA	4,92	0,16	28500	1,8	5	17,1	MS	
75	P29312	14-3-3 PROTEIN ZETA/DELTA	4,83	0,27	27900	11	16	52,7	MS	
561	P05388	60 S PROT PO RIBOSOMAL	5,59	nd	37286	nd	nd	nd	Match	
4	P08865	6/ KDA LAMININ RECEPTOR	4,97	0,18	40536	18,9	9	29,8	MS	Met-
1	P02570 P02570	ACTIN, BETA	5,29	016	41899	0,5	16	46,3	MS	
2	P02570	ACTIN BETA	5,14	0,10	42072	0,9	14	36,8	MS	Mat /and
130	P 02370	ACTIN, BETA	5.68	0,21	42190	3.0	16	24,0	MS	Mic Prace 12
57	P73526	ADENOSYL HOMOCYSTEINASE	6.15	0.12	42596	12	13	21.8	MS	
222	P09525	ANNEXIN IV	5.72	0.13	33059	7.7	12	28.9	MS	
120	P08758	ANNEXIN V	5,05	0,11	32300	10,9	22	62,4	MS	
507	P08133	ANNEXIN VI	5,54	nd	78186	nd	nd	nd	Match	
505	P08133	ANNEXIN VI	5,45	nd	80364	nd	nd	nd	Match	
506	P08133	ANNEXIN VI	5,49	nd	76814	nd	nd	nd	Match	
142	P07741	APRT	5,56	0,23	22170	11,9	6	40,2	MS	Met acet
144	015511	AR 16	5,6	0,13	18200	10,3	4	33,1	MS	
176	P07337	PROTEIN DISULFIDE ISOMERASE	4,99	0,31	52210	6,5	15	38,3	MS	
117	P52907	CAZI	5,55	0,1	36500	9,8	14	53,1	MS	
118	P47756	CAPB	5,65	0,04	32800	6,6	10	36,4	MS	
10/	000299	CORENTED IN FRACEL CHANNEL PROT I	5,26	0,24	30359	27	12	30,5	MS	
95	Q99829 Q15601	COPINE I	5,02	0,11	22400	5.7	12	18,8	MS	
144	Q10071 09V230	ECP 51	5.61	0.12	50000	12.3	15	40.2	MS MS/MS	
107	P14324	FPP SYNTHETASE	5.07	0,12	38600	5	10	40,2	MS	
18	P 52566	GDIS HUMAN	5.14	0.04	22590	15.5	11	59.2	MS	
541	P48637	GSHB	5.6	nd	52854	nd	nd	nd	Match	
23	P09211	GTP_HUMAN	5,61	0,16	24522	5,2	7	60,8	MS	
504	P11142	HEAT SHOCK COGNATE 71 KD	5,62	nd	74900	nd	nd	nd	Match	
503	P11142	HEAT SHOCK COGNATE 71 KD	5,49	nd	73800	nd	nd	nd	Match	
51	P04792	HSP 27 KD	6,06	1,77	28000	20,3	12	46,2	MS	
86	0 95433	HYPOTHETHICAL 38,3 kD PROT	5,53	0,12	41900	8,7	13	37	MS	
15	Q12765	HYPOTHETICAL PROTEIN KIAA0193	4,82	0,21	45274	13,6	8	24,3	MS	
560	Q13347	1F32	5,51	nd	38381	nd	nd	nd	Match	
115	Q06323	IGUP I-5111	5,72	0,03	30479	15,4	17	70,7	MS	
116	Q15181	INORGANIC PYROPHOSPHATASE	5,6	0,05	34200	4,5	9	33,9	MS, MS/MS	Met-acet2
223	Q12920 B12706	KI NUCLEAR AUTOANTIGENE	5,71	0,42	32000	3,5	19	24,7	MS	
99	P13/90 D12706	L-PLASTIN L DI ASTIN	5,20	0,05	64000	11,0	18	29	MS	
100	P 13790 D12706	L DI ASTIN	5.25	0,02	64000	10,7	13	21,2	MS	
70	P13796	L-PLASTIN L-DIASTIN	5.48	0.15	63000	2,0	10	21.5	MS	
150	004760	LACTOYLGI UTATHIONE LYASE	51	0.15	24181	18.3	9	361	MS	
151	Q04760	LACTOYLGLUTATHIONE LYASE	5.25	0	24453	16	9	36.1	MS	
174	014847	LASP-1	6.17	0.45	36815	18.6	6	29.9	MS	
30	P07195	LDH-H CHAIN	5,72	0	36000	2	14	37,2	MS	
76	P12004	PCNA	4,73	0,17	32800	12	18	64	MS	
108	Q15129	PROTEASOME ACTIVATOR SUBUNIT B	5,6	0,06	30600	10,3	19	66,1	MS	
170	P28070	PROTEASOME BETA CHAIN	5,7	0,19	25790	5,1	8	45,7	MS	
169	P28070	PROTEASOME BETA CHAIN	5,66	0,23	26448	8	5	27,9	MS	
131	P49720	PROTEASOME THETA CHAIN	6,24	0,02	25645	12	6	28,3	MS	
41	P28066	PROTEASOME ZETA CHAIN	4,8	0,11	27000	11,8	7	33,5	MS	
13	Q09028	RELINOBLASTOMA BINDING PROT P48	4,9	0,16	45549	4,7	9	22,1	MS	
10	P13489	RIBUNULLEASE INHIBITOR	4,82	0.11	42848	10.5	10	40,4	MS	
1.30	014805	KINA-DINDING PROTEIN REGUL	6,22	0,11	24522	18,6	12	33	MS	
149	P 300,20	SORCEN FROTEINE 22ND SPERMIDINE SYNTHASE	5.26	0,19	213/0	1.3	10	25.5	MS	
106	P17987	T-COMPLEX PROTEIN LALPHA	5.94	0.14	61860	2.5	9	213	MS Match	
126	P 50990	T-COMPLEX PROTEIN 1 THETA	5.58	0.09	58049	69	20	40.5	MS	
125	P48643	TCP-LEPSILON	5 15	0.13	31712	2.9	20	461	MS	
143	P32119	THIOREDOXIN PEROXIDASE 1	5,59	0,06	23513	12,4	11	32	MS	
562	P37837	TRANS ALDOLASE	5.92	nd	37629	nd	nd	nd	Match	
78	P12324	TROPOMYOSIN CYTOSKELETAL TYPE	4,85	0,1	30900	6,3	26	74,6	MS	
28	P04687	TUBULIN ALPHA-1	5,15	0,14	48838	3,2	13	41,2	MS	
34	Q16781	UBIQUITIN-PROTEIN LIGASE	5,96	0,13	16700	0,8	8	40,8	MS	
66	Q9Y3F4	UNR-INTERACTING PROTEIN	5,09	0,11	38500	0,1	13	46,3	MS	
140	P05120	UPOKINASE INHIBITOP	5 59	0.14	42807	2.6	14	27.2	ME	

SOF BODO CAPEDIS/SERVIC THEORY

Peptide mass fingerprinting

PeptIdent

n (984C) novelater, voltater, 7m_25434.

Gel 5-8

	- C	ł.	1	1	1	
42			-		1000	ŝ
	and a summer of			1.00		2
1-11 Inferr			10.00		1000	ŝ

(Mascot Search Results

Pepilik Vice

and the ALIGNMANTING in the state of

0ee 180 804 an picture and a second a fee an since he are Per la compañía de la

Conclusions

Les cartographies présentées dans ce poster sont accessibles à la communauté scientifique sur le site internet :

Sur 144 spots analysés par cartographie peptidique massique, 118 ont abouti à une identification fiable de la protéine contenue dans ce spot, ce qui représente un taux de réussite de 82%.

Les différences de pl entre les valeurs déterminées sur gel et les valeurs calculées à partir des séquences est de 0,16 unités de pH en moyenne. Les écarts de poids moléculaires entre les valeurs expérimentales et théorique sont en moyenne de 7,7%. L'analyse méticuleuse des spectres MALDI-TOF permet dans un certain nombre de cas de déterminer la nature du N terminal de la protéine.

